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Observation of Global Atmospheric Environment and Carbon Cycle Changes
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In cooperation with the National Institute for Environmental Studies, we are carrying out research on the global atmospheric environment, such as

global warming and air pollution. For that purpose, we are developing measurement techniques on atmospheric composition changes and terrestrial

carbon budgets. We conduct research and education on measurement principles, data processing algorithm, field experiments, and data analysis on the

basis of specific cases of remote sensing and in situ technologies. We also develop applications for atmospheric compositions/clouds/aerosols and their

surface processes, utilizing such instruments as satellite-borne, air-borne, ship-borne, and ground-based sensors. We conduct field measurements in

Asia, Antarctica, and the Arctic including Siberia, and we study global atmospheric environmental change by analyzing these data.
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Retrieval and trend-analysis of HFC-134a from
the FTIR measurement spectra taken at Tsukuba

We have developed a procedure for retrieving atmospheric abundances
of HFC-134a (CH,FCF;) with a ground-based Fourier transform infrared
spectrometer (FTIR) and have analyzed the spectra observed at Tsukuba,
Japan (36.1°N, 140.1°E). Recently, HFC-134a has been widely used as a
refrigerant substituting the ozone-depleting CFCs and HCFCs, and its
atmospheric amount has been rapidly increasing since the 2000s.
Measurements of HFC-134a were only possible by either a ground-based
sampling method or satellite remote-sensing method. We have developed
a new method to retrieve the HFC-134a total column from the ground-
based FTIR solar infrared spectra for the first time in the world. The
FTIR retrievals were conducted with the SFIT4 retrieval program via
two methods, i.e., the Tikhonov regularization method and optimal
estimation method (OEM). We retrieved daily-averaged total column
amounts of HFC-134a since 2018. As a result, HFC-134a has been
continuously increasing since 2018, with two peaks in spring and fall.
When comparing our results with observational trends at Jungfraujoch,
Switzerland, it was found that our results show similar or slightly larger
increasing trends. It may reflect the effect of increasing HFC-134a
production in China. We are planning to analyze the FTIR spectra taken
at Rikubetsu, Hokkaido which started in the mid-1990s.
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Fig. 1 Trend of daily-averaged HFC-134a retrieved with optimal
estimation method by FTIR observation spectra at Tsukuba. Each
point represents daily HFC-134a total columns, which curve and
line stand for fitted trends.
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Fig. 2 Comparisons among HFC-134a mixing ratio trends by FTIR, model (TOMCAT),
satellite (ACE) and ground-based sampling (AGAGE) at Jungfraujoch, Switzerland
since 2000. Trends by FTIR at Tsukuba since 2018 are also plotted.
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Fig. 3 Time series of methane mixing ratio in upper troposphere over the Pacific.

Variations of atmospheric methane mixing ratio
in upper troposphere over the Pacific

Atmospheric methane shows the second-strongest radiative forcing in
greenhouse gases. The mixing ratio of methane had increased in the
atmosphere since the industrial revolution until 2000. After stabilizing
for several years, methane started to increase again in 2007, with a
higher increase rate after 2020. The reason for the recent increase is
unclear but should be caused by several sources and sinks. For this
purpose, we have reanalyzed methane observation data in the world. As
part of these activities, we analyzed the methane data obtained by
aircraft observation (CONTRAIL project) and presented the latitudinal
difference of the methane mixing ratio in the upper troposphere over the
Pacific.

In the CONTRAIL project, methane observations are conducted by
sampling the air using automatic air sampling equipment (ASE) or
manual air sampling equipment (MSE) followed by laboratory analyses
using gas chromatograph.

Fig. 3 shows the time series of the methane mixing ratio in upper
troposphere over the Pacific from 40°N to the equator. The methane in
the upper troposphere shows a clear latitudinal gradient with higher
mixing ratios in higher latitudes and shows a steady increase in each
latitude. Extremely high values are frequently observed in summer in
the northern middle latitudes (40°N and 30°N).

Fig. 4 shows the fitting curves for methane observation data. Seasonal
variation in methane over tropical areas shows a minimum around July
and a maximum around January, which is due to the exchange in air
mass from the southern hemisphere and northern hemisphere. The
frequently observed methane peaks create a summer maximum in
northern mid-latitudes, which are influenced by natural methane
emission and efficient upward transportation in the summer season.
The latitudinal gradient in methane can be found in the boreal summer
and at a minimum in winter. A comprehensive analysis suggested that a
higher increase was found in northern high latitudes in 2020 and in low
latitudes in 2021.
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Fig. 4 Fitting curves for methane observation data.
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