環境共生機能学分野 Designing of Nano-Ecomaterials

環境との共生・エネルギーの 創製を担うナノ機能素材開発

Development of functional nano-ecomaterials for energy and environment in the environmentally benign systems

教授 田路 和幸 Professor Kazuyuki Tohji

ナノ材料は省資源で最高性能を発現する材料として期待されているが、真の意味で次世代環境対応型材料とするためには、目的とする機能を最大限に発現できる組成・結晶系・形態に制御する必要がある。この様な観点から、本研究室では、原材料中での材料の状態を計算及び X 線構造解析等の機器分析を通じて厳密に制御し、その反応機構を電気化学的手法や質量分析等を利用して解明する事で、高効率且つ均質な状態のナノ材料を開発する手法を開発している。また、高性能を発現するための状態制御法の開発を行っている。研究は (A) 自然エネルギー変換材料 (特異な形態を有するストラティファイド光触媒、熱電変換合金ナノ粒子、太陽電池用 CIGS ナノ粒子、など)、(B) 機能性ナノ - エコ材料 (均質合金ナノ粒子、高機能性電子用金属ナノ材料、固体高分子燃料電池用機能性ナノ触媒材料、炭素ナノ材料、など)、(C) 難溶性レアメタル等の抽出を可能とするための錯体制御技術、等に分類できる。

The research of Tohji Laboratory focused on how to develop well-defined nanomaterials and utilize them in our lives. In particular, we developed methods for synthesizing and utilizing useful nanomaterials with specific morphology.

Our research objectives can be classified into (a) natural energy conversion materials, such as photocatalysts with specific morphology (stratified photocatalysts), thermoelectric alloy nanoparticles, and CIGS alloy nanoparticles for solar cells; (b) functional nano-eco materials, such as uniform and well-crystallized alloy nano materials, well-defined electric integration nanomaterials, precise control of nano catalysts for fuel cells, and carbon nanomaterials; and (c) development of novel methods for extracting rare metals with precise control under complex condition

研究概要

遷移金属等の貴金属ではない金属のナノ材料を実用化することを念頭に、様々な金属/合金ナノ粒子を、環境負荷が少ない手法で合成する研究開発を行っている。特に、材料の特性の均質化や、高特性を発現する相の選択的合成、長寿命化、を達成するためには、均質で結晶性が高い金属/合金ナノ粒子であることが必要である。更に、工業的応用を念頭におくと耐酸化性が高くかつ表面被覆材の使用は限界まで低減する必要である。この様な全ての条件をすべて満たした金属/合金ナノ粒子を、ビーカー等の簡単な装置のみを用い、常温~70℃程度の水溶液中で、合成するという"現代の錬金術"と言える手法を開発している。

その為には、原料となる水溶液中において、金属の状態を均質化すること、合金を合成する様な場合には還元析出させるためのポテンシャルを単一化及び均質化することが必要である(合成する材料により、酸化および硫化をさせる場合もある)。そこで我々の研究室では計算手法を用いて水溶液中の金属錯体の種類等を制御し、その上で還元析出させる手法を開発した。

Research

To achieve industrial applications of transition metal/alloy nanoparticles instead of precious metal nanoparticles, various procedures for synthesizing these materials have been developed under low environmental loading conditions. In particular, a method of synthesizing "uniform" and "well-crystallized" metal/alloy nanoparticles should be developed to utilize the uniform properties, selective and high-performance, suitable phase, and long lifetime. Moreover, materials synthesized for commercial applications should have specific properties, such as high oxidative resistivity and low addition of surfactants. We have developed a method of synthesizing metal/alloy nanoparticles with the properties mentioned above; by using simple equipment and low energy conditions (RT-70°C) in the aqueous phase

To synthesize "uniform" and "well-crystallized" metal/alloy nanoparticles, the condition of metals in the aqueous phase should be restricted to the homogeneous phase, and the reduction potential of both metal complexes should be equal. Sometimes, oxide materials and also sulfide materials are also synthesized.

Therefore, we introduced our idea for a particle synthesis system based on the predicted concentration of metal complexes in an aqueous solution as a function of pH.

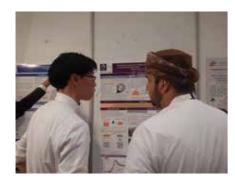


Fig. 1 Presentation of Mr. Iwama (MC2) at Chemistry Conference 2017, Green and Sustainable Chemistry (Muscat. Oman)

Fig. 2 Presentation of Mr. Ushida (MC2) at Chemistry Conference 2017, Green and Sustainable Chemistry (Muscat, Oman)

Fig.3 Presentation of Mr. Li (DC2) at 5th Nano Today Conference (Hawaii Island, USA)

准教授 高橋 英志 Associate Professor Hideyuki Takahashi

助教 横山俊 Assistant Professor Shun Yokoyama

助教 梅木 千真 Assistant Professor Senshin Umeki

技官 本宮 憲一 Technical Engineer Kenichi Motomiya

事務補佐員 早川 昌子
Clerical Assistant
Masako Hayakawa

例えば、化合物太陽電池材料となる Cu-In 合金ナノ粒子や Cu-In-Sナノ粒子、Cu-In-Sn 合金ナノ粒子、Cu-Zn-Sn-Sナノ粒子を水溶液中で合成し、塗布することで太陽電池を形成させる技術を開発した。また、導電性が高く耐酸化性が高い Cu ナノ粒子、透明導電性材料用の特異な形状制御を行った Cu 粒子、構造材料を低温で焼結するための Fe ナノ粒子、等の合成と実用化を試みている。更に、エネルギー材料として、熱電変換材料や燃料電池材料、特異な形状で高機能を発現するストラティファイド光触媒材料、を開発している。

学生諸君の国際及び国内会議発表、その他の活動

田路研究室所属の学生は、2017年4月-12月の期間に計16件 の学会研究会発表を行った。本研究室では、学生諸君の研究開発能 力や意識、コミュニケーション能力に対するグローバル化を促進する ことにも重点をおいており、学生諸君の国際会議での発表や博士課程 学生の留学を精力的に行っている。当該期間では、6月にシンガポー ルで開催された 9th International Conference on Materials for Advanced Technologies では MC2 の仲本龍一郎君が、11 月にオマーンで開催された Chemistry Conference 2017, Green and Sustainable Chemistryでは MC2 の岩間守弘君 (写真 1) および牛田勝也君 (写真 2) が、12月にハワイ島で開催された5th Nano Today Conference では DC2 の李明潔君 (写真 3) および MC2の仲本龍一郎君(写真4)が、発表を行っている。6月に開催 された資源・素材学会東北支部春季大会では MC2 の仲本龍一郎君 が金賞 (写真 5)、MC1 の佐藤康平君が銅賞 (写真 6)、9 月に開催さ れた資源・素材学会秋季大会では MC2 の岩間守弘君および牛田勝 也君が若手ポスター賞を受賞している。そのほか、資源・素材学会、 資源・素材学会東北支部大会、応用物理学会、X線分析討論会など、 国内の学会にも積極的に参加し、成果の発表を行っている。また、自 然エネルギーに関する周知活動や高大連携に係る東北大学講師派遣 における出前授業など、様々な活動を行っている。

For the solar cell application, we developed methods of synthesizing Cu-In alloy nanoparticles, Cu-In-S nanoparticles, Cu-In-Sn alloy nanoparticles, and Cu-Zn-Sn-S nanoparticles, and we applied these synthesized materials to the formation of printable solar cells. Moreover, we tried to synthesize Cu nanoparticles with high conductivity and oxidative resistivity, Cu materials with specific morphology, and Fe nanoparticles with low melting point to apply bonding materials. Thermoelectric materials, fuel cell materials, and stratified photo catalysts with specific morphology were also developed to apply these synthesized materials to environmental friendly energy materials.

Student activities (conferences, prizes, etc.)

Students from our laboratory attended sixteen international and domestic conferences from April to December 2017. To develop the various abilities of members, we recommended joining international conferences and studying abroad (DC course students).

This year, Mr. Tatsuichiro Nakamoto (MC2) joined the 9th International Conference on Materials for Advanced Technologies at Singapore (June); Mr. Morihiro Iwama (MC2, Fig.1) and Mr. Katsuya Ushita (MC2, Fig.2) joined the Chemistry Conference 2017, Green and Sustainable Chemistry, which was held in Muscat, Oman (November); and Mr. Li (DC2, Fig.3) and Mr. Tatsuichiro Nakamoto (MC2, Fig.4) joined the 5th Nano Today Conference, which held in Hawaii Island (December).

At the Tohoku branch spring meeting of the Mining and Materials Processing Institute of Japan (MMIJ) (Sendai, Japan, June), Mr. Tatsuichiro Nakamoto (MC2, Fig.5) won the gold prize and Mr. Kouhei Sato (MC1, Fig.6) won the bronze prize. Moreover, at the fall meeting of MMIJ (Sapporo, Japan, September), Mr. Morihiro Iwama (MC2) and Mr. Katsuya Ushita (MC2) won the Young scientists poster prize.

We joined the Spring and/or Fall meeting of MMIJ, the Japan Society of Applied Physics (JSAP) and others.

Moreover, we joined various social activities, such as events on natural energy, public lectures, and so on.

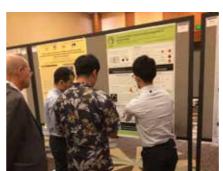


Fig.4 Presentation of Mr. Nakamoto (MC2) at 5th Nano Today Conference (Hawaii Island, USA)

Fig. 5 Mr. Nakamoto (MC2) win the Gold prize at the Tohoku branch spring meeting of MMIJ (Sendai, Japan)

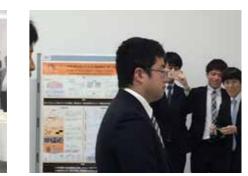


Fig.6 Mr. Sato (MC1) win the Bronz prize at the Tohoku branch spring meeting of MMIJ (Sendai, Japan)

22 Coexistence Activity Report 2017