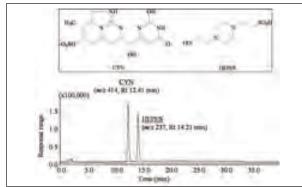
循環生態系計画学分野

水圏環境保全技術の開発

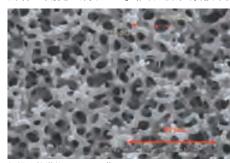
彼谷 邦光


2003 年度に新設した循環生態系計画学分野では、水 圏における環境保全技術の開発の一環として、1)微細 藻類の毒素と水環境の化学、2) 共連続構造を持つ多孔 質媒体の開発、3) 分子鋳型による選択的分離媒体の 開発、をテーマとして研究を進めている。

『微細藻類の毒素と水環境の化学』

水の富栄養化に伴い発生する藍藻類、いわゆるアオコ (図) は様々な毒性物質、生理活性物質を産生する。本 研究では、アオコが産生する新規物質の探索、そしてそれ らの物質の構造決定、毒性評価、分析法の開発を行なっ ている。本年度の研究において、藍藻毒であるシリンドロ スパーモプシン(CYN)の簡易定量分析法を開発した。 本手法では、容易な操作による分析前処理を行った後、 内部標準法を用いた液体クロマトグラィー一質量分析(LC-MS) による定量分析法を確立した。(図、CYN の定量 分析結果)また、2003年度から引き続き行なっているアミ ノ酸(リジン)を用いた有毒アオコの選択的な阻害剤の 開発では、隔離水界実験を行なった結果、有毒アオコの 選択的な除去に成功した。さらに、2004年度からの新た な研究課題として、藻類が作り出す炭化水素を利用した 新規代替エネルギーの開発にも着手しており、有用な新 規天然由来物質を発見した。

水の富栄養化により大発生したアオコ


CYN の定量分析結果

『共連続構造を持つ多孔質媒体の開発』

骨格と空孔が共に連続した構造体、これを共連続体と いうが(図参照)、細い骨格に対して相対的に広い流路 を持っていることから、送液が容易であるという利点を有する。

従来、シリカゲルを基とした無機系の共連続体は報告 があったが、有機高分子を基にしたもの、特に、反応誘 起型の有機高分子共連続体は報告が極めて少なかった。 我々のグループでは世界に先がけてエポキシ樹脂を基とし 構造が極めて制御された共連続体を開発した。

その応用として、ナノサイズの骨格を有し、ミクロンサイズ の流路を有する共連続型分離媒体を開発し、メートルあた り20 万段を与える世界最高性能の有機高分子基剤分離 媒体の開発に成功した。(図、新規分離媒体の SEM 画像)

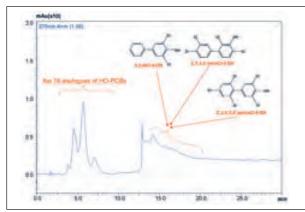
新規分離媒体の SEM 画像

『分子鋳型による選択的分離媒体の開発』

環境中には多量の物質が共存し、極微量の汚染物質 の選択的な分離、定量的な分析は極めて困難を要する。 そこで、本研究では分子鋳型 (分子インプリント) の概念を 利用し、様々な物質の選択的な分離。濃縮を手がけている。

2006年度の大きな研究成果として、近年問題視されて いる水酸化ポリ塩化ビフェニル(水酸化 PCB)の選択的 分離を達成した。水酸化 PCB のうち、甲状腺ホルモン活 性を持つと予想される同族体は、特異的な化学構造を有 しており、その化学構造を選択的に認識することにより、 約20種の同族体中から特定の同族体のみを選択的に分 離することが可能となった(図、水酸化 PCB の選択的分 離結果)。さらに、記憶喪失性貝毒であるドウモイ酸に対 する新規分離媒体を開発し、貝抽出物中のドウモイ酸の 完全分離を達成した。

これらの新規分離媒体は、当研究室で開発したフラグメ ントインプリント法(図)と呼ばれる分子インプリント法の一 種で、目的物質の一部分の構造を選択的に認識する手



久保 拓也

法を用いており、これらの手法で得られた分離媒体は、LC-MS(図)等の分析前処理剤として利用が考えられ、今 後の環境分析の大きな武器になると期待される。

フラグメントインプリント法の概念図

水酸化 PCB の選択的分離結果

「研究プロジェクト」

・受託研究:環境省ナノテクプロジェクト(分子鋳型)

・受託研究: 文部科学省科学技術振興調整費 (アジア の国際河川)

・受託研究:環境省地球温暖化対策研究(藻類の炭化 水素資源)

・科学研究費補助金:基盤研究B(あおこ由来の高親水的 肝臓毒・神経毒に対する選択的吸着媒体の開発と水環境

- ・経産省地域新生コンソーシアム研究開発事業再委託(2 件):(プリント配線板用写真現像型液状レジストの水性化 と高機能化/空調ロス削減のための排気誘導型システム と誘導装置の研究開発
- ・科学研究費補助金:若手研究 A (高親水性ポリマーモノ リスの開発と分子鋳型法によるタンパク質分離への応用)等

2006年のアクティビティー

【印刷論文】

- (1) K. Kaya, L. F. Morrison, G. A. Codd, J. S. Metcalf, T. Sano, H. Takagi, T. Kubo, Molecules, 11, 539-548,
- (2) K. Hosoya, N. Hira, K. Yamamoto, M. Nishimura, N. Tanaka, Anal. Chem., 78, 5729-5735, 2006
- (3) T. Kubo, M. Nomachi, K. Nemoto, T. Sano, K. Hosoya, N. Tanaka, K. Kaya, Anal. Chim. Acta, 577, 1-7, 2006

他9報(英文論文)

【報道】

•2006年5月20日(朝日新聞), 2006年8月4日(日 刊工業新聞), 2006年9月7日(日本経済新聞), 2006年10月(月刊ポータル)

【招待講演】

- · K. Kaya, Asian Science and Technology Seminar in Malaysia, 2006 "Conservation and Use of Ecosystems (JST)", Penang, Malaysia, (Mar. 12, 2006).
- · K. Kaya, International Workshop and Training on Fish Diversity of Mekong River. MeREM Workshop (Nov. 18, Sendai, Tohoku University)
- ・K. Hosova, スウェーデン化学会第18回Analytical Days (June 15, 2006)
- ・細矢憲,第19回バイオメディカル分析科学シンポジウム(Aug. 2. 2006)

【公開特許】

- ・「藍藻類由来界面活性物質とその合成法」、彼谷邦光
- ・「選択的分子認識能を有する高親水性分離媒体」、久 保拓也, 彼谷邦光
- ・「シリンドロスパーモプシンの簡易精製法」、久保拓也、 彼谷邦光

アクティビティレポート Coexistence Activity Report 2006